-A A +A
We use the concept of quantum entanglement to give a physical meaning to the electron correlation energy in systems of interacting electrons. The electron correlation is not directly observable, being defined as the difference between the exact ground state energy of the many-electron Schrödinger equation and the Hartree-Fock energy. Using the configuration interaction method for the hydrogen molecule, we calculate the correlation energy and compare it with the entanglement as a function of the nucleus-nucleus separation. In the same spirit, we analyze a dimer of ethylene, which represents the simplest organic conjugate system, changing the relative orientation and distance of the molecules to obtain the configuration corresponding to maximum entanglement.
Springer US
Publication date: 
1 Aug 2007

Tina AC Maiolo, Fabio Della Sala, Luigi Martina, Giulio Soliani

Biblio References: 
Volume: 152 Issue: 2 Pages: 1146-1159
Theoretical and Mathematical Physics